
Module 4
Software Security

Submodule	2:	Low-level	Attacks	and	
Defense	

CSCI	4391	Cyber	Attacks	and	Defense		 1	

What is Buffer Overflow Attack?
• One	of	the	most	common	OS	bugs	is	a	buffer	
overflow	

•  The	developer	fails	to	include	code	that		checks		
whether	an	input	string	fits	into	its	buffer	array.	

•  An	input	to	the	running	process	exceeds	the	length	of		
the	buffer.	

•  The	input	string	overwrites	a	portion	of	the	memory	of	
the	process.	

•  Causes	the	application	to	behave	improperly	and	
unexpectedly.	

CSCI	4391	Cyber	Attacks	and	Defense		 2	

Effect of Buffer Overflow Attack
•  The	process	can	operate	on	malicious	data	or	
execute	malicious	code	passed	in	by	the	attacker.	

•  If		the	process	is	executed	as	root,	the	malicious	
code	will	be	executing	with	root	privileges.	

CSCI	4391	Cyber	Attacks	and	Defense		 3	

Address Space
•  Every	program	needs	to	access	memory	in	order	to	
run.	

•  For	simplicity	sake,	it	would	be	nice	to	allow	each	
process	(i.e.,	each	executing	program)	to	act	as	if	it	
owns	all	of	memory.	

•  The	address	space	model	is	used	to	accomplish	this	
•  Each	process	can	allocate	space	anywhere	it	wants	in	
memory	

•  Most	kernels	manage	each	process’	allocation	of	
memory	through	the	virtual	memory	model	

•  How	the	memory	is	managed	is	irrelevant	to	the	process	

CSCI	4391	Cyber	Attacks	and	Defense		 4	

Virtual Memory
• Mapping	virtual	addresses	to	real	addresses	

CSCI	4391	Cyber	Attacks	and	Defense		 5	

Another	
Program	

Hard	Drive	

Program	Sees	 Actual	Memory	

Unix Address Space
•  Text:	machine	code	of	the	
program,	compiled	from	the	source	
code.	

•  Data:	static	program	variables	
initialized	in	the	source	code	prior	
to	execution.	

•  BSS	(block	started	by	symbol):	
static	variables	that	are	
uninitialized.	

•  Heap	:	data	dynamically	generated	
during	the	execution	of	a	process.	

•  Stack:	structure	that	grows	
downwards	and		keeps	track		of	the	
activated		method	calls,	their	
arguments	and	local	variables.	

CSCI	4391	Cyber	Attacks	and	Defense		 6	

Low	Addresses	
0x0000	0000	

High	Addresses	
0xFFFF	FFFF	

Stack	

Heap	

BSS	

Data	

Text	

Vulnerabilities and Attack Method
• Vulnerability	scenarios	

•  The	program	has	root	privileges	(setuid)	and	is	launched	
from	a	shell		

•  The	program	is	part	of	a	web	application	

•  Typical	attack	method	
1.  Find	vulnerability	
2.  Reverse	engineer	the	program	
3.  Build	the	exploit	

CSCI	4391	Cyber	Attacks	and	Defense		 7	

Buffer Overflow Attack in a Nutshell
•  First	described	in	

•  Aleph	One.	Smashing	The	Stack	For	Fun	And	Profit.	e-
zine	www.Phrack.org	#49,	1996	

•  The	attacker	exploits	an	unchecked	buffer		to	
perform	a	buffer	overflow	attack.	

•  The	ultimate	goal	for	the	attacker	is	getting	a	shell	
that	allows	to	execute	arbitrary	commands	with	
high	privileges.	

• Kinds	of	buffer	overflow	attacks:	
•  Heap	smashing	
•  Stack	smashing	

CSCI	4391	Cyber	Attacks	and	Defense		 8	

Buffer Overflow

CSCI	4391	Cyber	Attacks	and	Defense		 9	

•  Retrieves	domain	registration	info	
•  e.g.,	domain	brown.edu	

domain.c	
Main(int	argc,	char	*argv[])		
/*	get	user_input	*/	
{	
				char	var1[15];	
				char	command[20];	
				strcpy(command,	“whois	");	
				strcat(command,	argv[1]);	
				strcpy(var1,	argv[1]);	
				printf(var1);	
				system(command);	
}			

Top	of	
Memory	
0xFFFFFFFF	

Bottom	of	
Memory	
0x00000000	

Stack	
Fill	

Direction	

var1 (15 char)

command
(20 char)

CSCI	4391	Cyber	Attacks	and	Defense		 10	

•  argv[1]	is	the	user	input	
•  strcpy(dest,	src)		does	not	check	buffer	
•  strcat(d,	s)	concatenates	strings	

domain.c	
Main(int	argc,	char	*argv[])		
/*get	user_input*/	
{	
				char	var1[15];	
				char	command[20];		
				strcpy(command,	“whois	");	
				strcat(command,	argv[1]);	
				strcpy(var1,	argv[1]);	
				printf(var1);	
				system(command);	
}			

var1	(15	char)		

command
(20 char)

argv[1]

(15 char)
argv[1]

(20 char)

Top	of	
Memory	
0xFFFFFFFF	

.	.	.	

Stack	
Fill	

Direction	

Overflow
exploit

strcpy() vs. strncpy()
•  Function	strcpy()	copies	the	string	in	the	second	
argument	into	the	first	argument	

•  e.g.,	strcpy(dest,	src)	
•  If	source	string	>	destination	string,	the	overflow	
characters	may	occupy	the	memory	space	used	by	other	
variables	

•  The	null	character	is	appended	at	the	end	automatically	
•  Function	strncpy()	copies	the	string	by	specifying	
the	number	n	of	characters	to	copy	

•  e.g.,	strncpy(dest,	src,	n);	dest[n]	=	‘\0’	
•  If	source	string	is	longer	than	the	destination	string,	the	
overflow	characters	are	discarded	automatically	

•  You	have	to	place	the	null	character	manually	

CSCI	4391	Cyber	Attacks	and	Defense		 11	

Return Address Smashing

CSCI	4391	Cyber	Attacks	and	Defense		 12	

•  The	Unix	fingerd()	system	call,	which	runs	
as	root	(it	needs	to	access	sensitive	files),	
used	to	be	vulnerable	to	buffer	overflow	

•  Write	malicious	code	into	buffer	and	
overwrite	return	address	to	point		
to	the	malicious	code	

•  When	return	address	is	reached,	it	will	now	
execute	the	malicious	code	with	the	full	
rights	and	privileges	of	root	

void	fingerd	(…)	{	
	char	buf[80];	
	…	
	get(buf);	
	…	

}	

cu
rr
en

t	
fr
am

e	
	p
re
vi
ou

s	
fr
am

es
	

f()	arguments		

buffer	

	
	

local	variables	

program	code	 program	code	

next	location	

padding	at
ta
ck
er
’s
	in
pu

t	

malicious	code	
return	address	
f()	arguments		

return	address	

Unix Shell Command Substitution
•  The	Unix	shell	enables	a	command	argument	to	be	
obtained	from	the	standard	output	of	another.	

•  This	feature	is	called	command	substitution.	
• When	parsing	command	line,	the	shell	replaces	the	
output	of	a	command	between	back	quotes	with	
the	output	of	the	command.	

•  Example:	
•  File	name.txt	contains	string	farasi	
•  The	following	two	commands	are	equivalent	
•  	finger	`cat	name.txt`	
•  finger	farasi	

CSCI	4391	Cyber	Attacks	and	Defense		 13	

Shellcode Injection
• An	exploit		takes	control	of	attacked	computer	so	
injects	code		to	“spawn	a	shell”	or	“shellcode”.	

• A	shellcode	is:	
•  Code	assembled	in	the	CPU’s	native	instruction	set	(e.g.	
x86	,		x86-64,	arm,	sparc,		risc,	etc.)	

•  Injected	as	a	part	of	the	buffer	that	is	overflowed.	
• We	inject	the	code	directly	into	the	buffer	that	we	
send	for	the	attack.	

• A	buffer	containing	shellcode	is	a	“payload”.	

CSCI	4391	Cyber	Attacks	and	Defense		 14	

Buffer Overflow Mitigation
• We	know	how	a	buffer	overflow	happens,	but	why	
does	it	happen?	

•  This	problem	could	not	occur	in	Java;	it	is	a	C	
problem	

•  In	Java,	objects	are	allocated	dynamically	on	the	heap	
(except	ints,	etc.)	

•  Also	cannot	do	pointer	arithmetic	in	Java	
•  In	C,	however,	you	can	declare	things	directly	on	the	
stack	

CSCI	4391	Cyber	Attacks	and	Defense		 15	

Buffer Overflow Mitigation (cont.)
• One	solution	is	to	make	the	buffer	dynamically	
allocated.	

• Another	(OS)	problem	is	that	fingerd	had	to	run	as	
root.	

•  Just	get	rid	of	fingerd’s	need	for	root	access	(solution	
eventually	used)	

•  The	program	needed	access	to	a	file	that	had	sensitive	
information	in	it	

•  A	new	world-readable	file	was	created	with	the	
information	required	by	fingerd	

CSCI	4391	Cyber	Attacks	and	Defense		 16	

Using Random Canary

CSCI	4391	Cyber	Attacks	and	Defense		 17	

•  The	canary	is	placed	in	the	stack	prior	to	the	return	
address,	so	that	any	attempt	to	over-write	the	return	
address	also	over-writes	the	canary.	

Buffer	overflow	attack	attempt:	

x	

Acknowledgement
• Part	of	the	content	in	this	document	is	adopted	
from	the	recommended	textbook:		

Michael	Goodrich,	Roberto	Tamassia,	“Introduction	
to	Computer	Security”,	1st	Edition.	Pearson.	ISBN-13:	
978-0321512949,	ISBN-10:	9780321512949		

CSCI	4391	Cyber	Attacks	and	Defense		 18	

